
Implementing the NHT-1 Application I/O

Benchmark

Samuel A. Fineberg

Report RND-93-007 May 1993

Computer Sciences Corporation 1

Numerical Aerodynamic Simulation

NASA Ames Research Center, M/S 258-6

Moffett Field, CA 94035-1000

(415)604-4319

e-mail: fineberg@nas.nasa.gov

Abstract

The NHT-1 I/O (Input/Output) benchmarks are a benchmark suite developed at the

Numerical Aerodynamic Simulation Facility (NAS) located at NASA Ames

Research Center. These benchmarks are designed to test various aspects of the I/O

performance o__parallel_supercomAguters. One of these benchmarks, the Applica-

tion I/O Benchmark, is designed to test the I/O performance of a system while exe-

cuting a tyoic_ computational fluid dynamic,_ annlication_ In this paper, the
implementation of this benchmark on three parallel systems located at NAS and

the results obtained from these implementations are reported. The machines used

were an 8 processor Cray Y-MP, a 32768 processor CM-2, and a 128 processor

iPSC/860. The results show that the Y-MP is the fastest machine and has relatively

well balanced I/O performance. I/O adds 2-40% overhead, depending on the num-

ber of processors utilized. The CM-2 is the slowest machine, but it has I/O that is

fast relative to its computational performance. This resulted in typical I/O over-

heads on the CM-2 of less than 4%. Finally, the iPSC/860, while not as computa-

tionally fast as the Y-MP, is considerably faster than the CM-2. However, the

iPSC/860's I/O performance is quite poor and can add overhead of more than 70%.

1. This work was supported through NASA contract NAS 2-12961.

1.0 Introduction

The NHT-1 I/O (Input/Output) benchmarks are a new benchmark suite being

developed at the Numerical Aerodynamic Simulation Facility (NAS), located at

NASA Ames Research Center. These benchmarks are designed to test the perfor-

mance of parallel I/O subsystems under typical workloads encountered at NAS.

The benchmarks are broken into three main categories, application disk I/O, peak

(or system) disk I/O, and network I/O. In this report, the experiences encountered

when implementing the application disk I/O benchmark on systems located at

NAS will be reported. Further, the results of the benchmark on these systems are

presented.

2.0 The Application I/O Benchmark 1 [CAC92]

2.1 Background

Computational Fluid Dynamics (CFD) is one of the primary fields of research that

has driven modem supercomputers. This technique is used for aer_xlynamic simu-

lation, weather modeling, as well as other applications where it is necessary to

model fluid flows. CFD applications involve the numerical solution of non-linear

partial differential equations in two or three spatial dimensions. The governing dif-

ferential equations representing the physical laws governing fluids in motion are

referred to as the Navier-Stokes equations. The NAS Parallel Benchmarks

[BaB91] consist of a set of five kernels, less complex problems intended to high-

light specific areas of machine performance, and three application benchmarks.

The application benchmarks are iterative partial differential equation solvers that

are typical of CFD codes. While the NAS Parallel Benchmarks are a good measure

of computational performance, I/O is also a necessary component of numerical

simulation. Typically, CFD codes iterate for a predetermined number of steps. Due

to the large amount of data in a solution set at each step, the solution files are writ-

ten intermittently to reduce I/O bandwidth requirements for the initial storage as

well as for future post-processing. The Application I/0 Benchmark [CAC92] simu-

lates the I/O required by a pseudo-time stepping flow solver that periodically

writes its solution matrix for post-processing (e.g., visualization). This is accom-

plished by implementing the Approximate Factorization Benchmark (called BT

because it involves finding the solution to a block tridiagonal system of equations)

precisely as described in Section 4.7.1 of The NAS Parallel Benchmarks [BaB91 l,

with additions described below. In an absolute sense, this benchmark only mea-

sures the performance of a system on this particular class of CFD applications and

only a single type of application I/O. However, the results from this benchmark

should also be useful for predicting the performance of other applications that

exhibit similar behavior. The specification is intended to conform to the "'paper and

pencil" format promulgated in the NAS Parallel Benchmarks, and in particular the

Benchmark Rules as described in Section 1.2 of [BaB91].

1. To obtain a copy of the NAS Parallel Benchmarks or the NHT- 1 I/O Benchmarks report as well as sample

implementations of the benchmarks, send e-mail to bm- codes@ha s. n a s a. g o v or send US-mail to NAS

Systems Development Branch, M/S 258-5, NASA Ames Research Center. Moffett Field, CA 94035.

2.2 Benchmark Instructions

The BT benchmark consists of a set of N S iterations performed on a solution vector

U. For the Application I/O Benchmark, BT is to be performed with precisely the

same specifications as in the NAS parallel benchmarks, with the additional

requirement that every I w iterations, the solution vector, U, must be written to disk

file(s) in a serial format. The serial format restriction is imposed because most

post-processing is currently performed on serial machines (e.g., workstations) or

other parallel systems. Therefore, the data must be in a format that is interchange-

able with other systems without significant modification. I/O may be performed

either synchronously or asynchronously with the computations. Performance on

the Application I/O Benchmark is to be reported as three quantities: The elapsed

time TT, the computed I/O transfer rate RIO, and the I/O overhead 4- These quanti-
ties are described in detail below.

The specification of the Application I/O Benchmark is intended to facilitate the

evaluation of the I/O subsystems as integrated with the processing elements.

Hence no requirement is made of initial data layout, or method or order of transfer.

In particular, it is permissible to sacrifice floating point performance for I/O perfor-

mance. It is important to note, however, that the computation-only performance
will be taken to be the best verified time of the BT benchmark.

For this paper, the matrix dimensions, N_, N_, and N_ are assumed to be equal and
are lumped in to a single parameter called N. The benchmark is to be nan with the

input parameters shown for the largest problem size in Table 1. In addition, for this

paper, the two smaller sizes were also measured to facilitate comparison with

slower machines.

TABLE 1. Benchmark input parameters

N N s

12 60

Iw

10

64 200 5

102 200 5

2.3 Reported Quantities

2.3.1 Elapsed Time

The elapsed time T T is to be measured from the identical timing start point as spec-

ified for the BT benchmark, to the larger of the time required to complete the file

transfers, or the time to complete the computations. The time required to verify the

accuracy of the output files generated is not to be included in the time reported for

the Application FO Benchmark.

2.3.2 Computed I/O Transfer Rate

The computed I/O transfer rate RIo is an indication of total application perfor-

3

mance, not just I/O performance. It is to be calculated from the following formula:

(5w) X (N 3) xN s

Rto = IwTT

Here, N 3 is the grid size dimension, N S is the total number of iterations, I w is the

number of iterations between write operations, w is the word size of a data element

in bytes, e.g., 4 or 8, and T T is the total elapsed time for the BT benchmark with the

added write operations. Note that the 5 in the numerator of the equation for RIO

reflects the fact that U is a 5xNxNxN matrix. The units of Rto are bytes per sec-
ond.

2.3.3 I/0 Overhead

I/O overhead, 4, is used to measure system "balance." It is computed as follows:

The quantity T C is the best verified run time in seconds for the BT benchmark, for

an identically sized benchmark run on an identically configured system. This is

vital to insure that any algorithm changes needed to implement fast I/O do not

skew the overhead calculation by generating a T C that is too large. In this paper

this constraint was not strictly followed. Instead, T C was assumed to be the run-t-

ime of the particular BT application without any I/O code added and no algorithm

modifications were made to improve I/O performance. This was because there

were no published results for the largest N-102 size of the BT benchmark and not

all of the codes used to generate the published N-64 results were available. The

effects of variations in T C will be discussed further in Section 4.

2.4 Verification

Another aspect of the Application I/O Benchmark is that the integrity of the data

stored on disk must verified by the execution of a post-processing program on a

uniprocessor system that sequentially reads the file(s) and prints elements on the

solution vector's diagonal. Output from this program is compared to output from

an implementation that is known to be correct in order to verify the file's integrity.

3.0 Implementation

Implementing the application I/O benchmark on a given machine involves two dis-

tinct tasks. First, one must develop or obtain a version of the BT benchmark for the

target system. Second, one has to add the I/O operations to the existing code and

make any possible optimizations. Of these tasks, however, the first is the most crit-

ical. This is because the quality of implementation of the BT benchmark code can

4

greatlyeffectbothR10 and 4. Further, if the value of Tc used for the overhead cal-

culation is not the best one available, the amount of overhead may be greatly dis-

torted. Examples of this will be discussed in the following sections.

3.1 Cray yoMp

The Cray Y-MP 8/256 on which the experiments were run has eight processors and

256MW (2GBytes) of 64-bit 15-ns memory. Its clock cycle time is 6-ns and its

peak speed is 2.7 GFLOPS. I/O is performed on a set of 48 disk drives making up

90GBytes of storage, For this benchmark, the Session Reservable File System

(SRFS) [Cio92] was used. This is a large area of temporary disk space that can be

reserved by applications while they are running. This assures that a sufficient

amount of relatively fast (8MByte/sec) disk space will be available while an appli-

cation is running. While additional performance might be gained by manually

striping files across multiple file systems, there is no support for automatic striping
of files.

The BT benchmark for the Cray was obtained fi'om Cray Research. This ctxle will

be referred to as CrayBT. CrayBT was written in FORTRAN 77 using standard

Cray directives and multitasking. It was designed for the N--64 benchmark and had

to be modified to run for the N-102 case. This modification was completed, the

I/O portion of the benchmark code was added, and a verification program was

written. Measurements were made in dedicated mode to eliminate any perfor-

mance variations due to system load.

The I/O code was implemented on the Cray using FORTRAN unformatted writes.

U was laid out as a simple NxNxNx5 matrix and could be written with a simple

write statement. The code used for opening the file is shown below:

open (unit=ibin,file='btout.bin',status='unknown',

*access =' sequential ' , form ='unformatted')

rewind ibin

where ibin is the unit number to which the output file will be assigned and the

file name is btout, bin. Then, the actual writes are performed as follows:

do l=l,nz

write(ibin) (((u(j,k, l,i) , j=l,nx) ,k=l,ny) ,i=l, 5)

enddo

Here, u is the solution vector, and nx, ny, and nz are equivalent to N_, Nq, and N_.
During each write step where step mod Iw -- 0, nz writes occur, each writing

nx*ny*5 words for a total of nz*nx*ny*5*8 bytes (69120 for N-12, 10485760 for

N-64, and 42448320 for N-102) per write of U. The advantage of this format is

that when verifying the code, the solution vector may be read back nx*ny*5*8

bytes (5760 for N-12, 163840 for N-64, and 416160 for N--102) at a time, signifi-

cantly reducing the amount of memory needed for the verification program.

5

Finally, the verification can be accomplished easily with the following shoa pro-

gram:

program btioverify

integer bsize,isize,ns,iw,nwrite

c defines isize, bsize, etc.

include 'btioverify.incl'

real*8 u(isize,isize,bsize)

integer tstep, i,j

open (unit=8,file='btout.bin',status='unknown',

*access='sequential',form='unformatted ')

do tstep=l,nwrite

do i=l,isize

read(8) u

do j=l,bsize

write(6,'(Fl5.10)') u(i,i,j)

enddo

enddo

enddo

stop

end

3.2 Thinking Machines CM-2

The CM-2 is a SIMD parallel system consisting of up to 65536 1-bit processors

and up to 2048 floating point units [Hi187, ZeL88]. The configuration used for

these experiments had 32768 1-bit processors, 1024 floating point units, and

4GBytes of memory. The system is controlled by a Sun 4/490 front end. The pri-

mary I/O device is the DataVault. The DataVault is a striped, parity checked disk

array capable of memory to disk transfer rates of up to 25MBytes/sec. However, to

achieve this speed, it uses a parallel file format that is unusable by any other

machine or even a different CM-2 configuration. To satisfy the file format con-

straints of the benchmark, it was necessary to use the DataVault in "'serial" mode.

This was done with the cm array_to_file_so subroutine call provided by

Thinking Machines. The result of this call is a file in serial FORTRAN order con-

taining the array with no record markers. This call was measured to operate at

approximately 4.3 MBytes/sec.

Verification of data for the CM-2, however, required a different approach. Unlike

the Cray or iPSC/860, it is not feasible to verify the results on a single node. There-

fore, one must transfer the file to another machine to verify the data. Due to the

large size of the output file (1.6GBytes for the full size benchmark), ethemet trans-

fers were impractical. Further, problems with the network interface slowed down

the high speed network link provided and limited the choice of verification

machines. The most practical machine to verify the benchmark was the Cray Y-MP

due to its high speed network links and its large available disk space. Therefore,

the files were transferred to the Cray through the CM-HiPP1 and UltraNet hub.

One difficulty in verifying the data was the different floating point lbrmats of the

CrayandtheCM-2. This wasalleviatedusingthe ieg2cray function to convert

the 64-bit IEEE floating point numbers generated on the CM-2 to 128-bit Cray

floating point numbers. The 128-bit Cray format was chosen so that this conver-

sion could be done with no loss of precision.

Initially, the I/O benchmark was implemented using the publicly available sample

implementation of the BT benchmark written in CM-FORTRAN. This code will

be referred to as SampleBT/CMF. The computation rate of SampleBT/CMF was

very slow. A faster version was obtained from NAS's Applied Research Depart-

ment (RNR). This version, RNRBT/CMF, was also written in CM-FORTRAN. It

was faster but was not as fast as the codes cited in [BaB92]. It is the fastest version

that can run for N--12 and N-102 and does not use the TMC supplied library block

tridiagonal solver. The fastest BT code for N-64 used an algorithm that was

dependent on N being evenly divisible by 16 and was therefore unsuitable for the

I/O benchmark (i.e., it would not run for the official benchmark size of N= 102).

While the RNRBT/CMF code was about 32% faster than SampleBT/CMF, it still

could not complete the large size (N= 102) benchmark in less than about 18 hours.

The actual UO code was quite simple to implement. The file was opened as fol-
lows:

call cmf_file open(ibin,

$ 'datavault:/fineberg/btout.bin',istat)

call cmf file rewind(ibin, istat)

where ibin is the unit number, istat is a variable in which the status of the

operation will be stored, and the file to be stored on the datavault is called

/fineberg/btout. bin. For SampleBT/CMF, U was stored in a 4-dimen-

sional matrix spread across the processors. The code for writing this matrix was as
follows:

if (mod(istep,ibinw) .eq. O) then

call cmf cm array to file_so(ibin,

endif

u, istat)

where istep is the cu_ent step number, and ibinw is the write interval Iw. For

RNRBT/CMF, U was broken up into five 3-dimensional matrices. These were

written consecutively as follows:

if (mod(istep, ibinw) .eq. O) then

call cmf cm array to file_so(ibin, ul, istat)

call cmf cm array to file_so(ibin, u2, istat)

call cmf cm array to file_so(ibin, u3, istat)

call cmf cm array to file_so(ibin, u4, istat)

call cmf cm array_to file so(ibin, u5, istat)

endif

Verification was performed on the Cray Y-MP with the following C program:

include <stdio.h>

#include _btioverify.incl"
main()
[

FILE *fp;

long i,j,k,n;

char foreign[8];

double data;

fp = fopen(_btout.bin H, ar");

for (k=0; k<RPT; k++)[

for (i=0; i<DIM; i++)[

fseek(fp, 5*8*(DIM*DIM*DIM)*k +

DIM*DIM*i), 0);

for (j=0; j<5; j++){

fread(foreign, 8, i, fp);

CONVERT(foreign, &data);

printf(_%15.101f\n ", data);

fseek(fp, 8*(DIM*DIM*DIM)-8,

}

}

}

fclose (fp) ;

}

8"(i + DIM*i +

1);

where DIM-N and RPT-Ns/I w (these are defined in btioverify, incl).

CONVERT is a small FORTRAN program that calls Cray's ieg2cray function to

convert from IEEE 64-bit floating point numbe_ to Cray 128-bit floating point
numbe_. The text to convert is as follows:

function CONVERT(a, b)

real a

double precision b

ierr = ieg2cray(3, I, a, 0, b, i, x)

convert=l

return

end

Note this program assumes that the matrix is written as specified for

RNRBT/CMF. For SampleBT/CMF, U was a 5xNxNxN matrix, so the fseek's

would be different (RNRBT/CMF's output is written in FORTRAN order for a

NxNxNx5 matrix). Both file formats are legal for the benchmark and should result

in the same verification output file.

3.3 Intel IPSC/860

The iPSC/860 is a hypercube interconnected multicomputer consisting of up to

128 i860 computational nodes and an i386 based host processor [Int91]. The nodes

each have 8MB of memory (1GByte total) and run a small run-time kernel based

OS called NX. The host system runs UNIX. The hypercube network uses a form of

8

circuit switching [Nug88] andlinks betweennodesoperateat about2.8MB/sec.
I/O on theiPSC/860is handledby its Concurrent File System (CFS), a set of i386

based processors controlling individual SCSI disks. The I/O nodes are each con-

nected to a node on the hypercube network via an added link at each node, i.e.,

each node has 8 links, 7 for communicating with other nodes and one that can be

used to connect to an I/O node. The CFS used for these experiments had 10 I/O

processors, attached to each was a disk with a theoretical transfer rate of 1MByte/-

sec. CFS files can be striped across disks for a theoretical peak throughput of

10MBytes/sec, although actual obtained performance is considerably lower

[Nit92] and is dependent on block size and data layout. I/O was implemented using

the cwrite () synchronous write calls provided by Intel. The use of asynchro-

nous I/O was avoided because the amount of data generated was larger than the

available buffer space and it slowed down I/O for the larger problem sizes.

Initial experiments used a version of the BT benchmark (SampleBT/iPSC) with a

1D data decomposition where only N processors could be used for a size N 3 prob-

lem. This code was written in FORTRAN 77 using Intel's standard message pass-

ing library. As expected, the results were disappointing, and though the measured

overhead was low, the execution time was high and RIO was low. For more on

these results, see Section 4.3. Implementation of the I/O code for the 1D partition-

ing was more difficult than for both the Cray and CM-FORTRAN implementations

because it was necessary to construct a sequential ordering on the CFS from inde-

pendent regions of memory on each node. Unlike the CM-2, there is no library

support for this. This code is implemented as follows. First, node 0 makes sure that

no pre-existing file is resident on the CFS by opening it and closing it with the

option "status =' delete' ." Next, node 0 opens the file and pre-allocates the

space using lsize. It then closes the file and broadcasts a message to all other

nodes indicating whether the pre-allocation was successful or not. If the pre-allo-

cation fails, the program terminates. If not, all nodes open the file. The code tor
this is shown below:

ciam is equal to the processor's node number

if (iam .eq. O) then

open (unit=ibin, file='/cfs/fineberg/btout.bin ',

$ status='unknown ',form='unformatted ')

c delete any pre-existing file

close (unit=ibin, status='delete ')

open (unit=ibin, file='/cfs/fineberg/btout.bin ',

$ status='new ',form='unfOrmatted ')

c Calculate length then pre-allocate file space

lengthl = nx*ny*nz*8*5*(itmax/ibinw)

length = isize(ibin, lengthl, O)

close (unit=ibin)

c check if isize worked

if (lengthl .he. length) then

c isize didn't work

call csend (12345, O, 4, -i, O)

9

stop 'Inadequate CFS

else

c isize worked

call csend (12345, i,

endif

else

call crecv(12345, iok,

if (iok .eq. 0) then

c isize didn't work

stop

endif

endif

file space'

4, -i, 0)

4)

c everyone opens file

open (unit=ibin, file='/cfs/fineberg/btout.bin',

Sstatus='old',form='unformatted ')

rewind ibin

Next, the program begins to iterate, and every ibinw iterations the data is written
as follows:

if (mod(istep, ibinw) .eq. 0) then

if (iam .it. nx) then

offset = ((istep/ibinw)-l)*nx*ny*nz*5*8 + 5*8*iam

istat = iseek(8, offset, 0)

do 992 ia=l,nz

do 991 ja=l,ny

call cwrite(8, u(l, i, ja, ia), 40)

offset = (nx-l)*5*8

istat = iseek(8, offset, i)

991 continue

992 continue

endif

endif

As demonstrated with the other machines, results utilizing a less than optimal cod-

ing of the computational part of the benchmark were not useful. Therefore, a better

implementation of the BT benchmark that decomposed data along three dimen-

sions (RNRBT_3D/iPSC) was obtained from Sisira Weeratunga [Wee92] of

NAS's Applied Research Department. This code, also written in FORTRAN 77

with message passing, was considerably faster than the 1D code and more effi-

ciently used the available processors. However, for the RNRBT 3D/iPSC imple-

mentation described later, additional synchronization had to be added to the I/O

benchmark to correct a timing problem that appeared after adding the I/O code.

The problem was most evident when using 128 processors. To correct the problem,

when 128 processors were used, the processors were grouped such that only a

fixed number of processors (<128) could write at once. Fortunately, this additional

10

synchronization not only Co_Tected the problem but ",also decreased execution time.

The effect of this grouping of processors on the N-102 application I/O bench-

mark's execution time is plotted in Figure 1. As can be seen from this graph, the

Figure 1" Effect of Grouped Writing
on the iPSC/860

3.6e+03

3.5e+03

3.4e+03

3.3e+03

_3.2e+03

E
_ 3.1e+03

• 3.0e-m3

_ 2.9e+03

2.8e+03

2.7e+03

2.6e+03 ! !

Writer Group Size (processors)

lowest execution time was achieved for a write group size of 16. Therefore, for the

experiments shown later in this paper, only groups of 16 processors were allowed

to write at a time for all 128 node experiments on the iPSC/860. Note that these

results corroborate similar CFS performance anomalies described in [Nit92].

The complicated data layout and the _quired synchronization caused the imple-
mentation of the UO code for RNRBT/iPSC to be mo_ difficult than for the other

systems. The sequence for opening the file was the same as was shown for the

SampleBT/iPSC example. However, the code for each of the writes of the solution

vector u was much mo_ complicated. This code is shown below:

if (mod(istep, ibinw) .eq. O) then

if (iam .ge. group) then

c wait until node iam-group has finished

call crecv(9999, itemp, i)

endif

offsetl = (((istep/ibinw)-l)*nx*ny*nz +

$ mod(iam,nodex)*idx)

do ha3 = O, idz-i

offset3 = ((iam/(nodex*nodey))*idz + na3)*nx*ny

do na2 = O, idy-i

offset2 = ((mod(iam,nodey*nodex)/nodex)*Idy

$ + na2)*nx

ii

offset = 40*(offsetl+offset2+offset3)

c find correct file position

istat = iseek(ibin, offset, 0)

c write data

call cwrite(ibin, u(l,l,na2+l,na3+l),

enddo

enddo

if (iam .it. nodes-group) then

c start node Jam+group

call csend (9999, itemp, i, iam+group, 0)

endif

call gsync()

endif

40*idx)

The writes for RNRBT/iPSC went as follows. The first group processors start

writing data while the other processors wait for a message. The writing consists of

a series of lseeks to the proper file positions followed by cwrites. When a

node finishes writing its data, it sends a message to the node iam+group, causing

that node to start writing data and waits for all nodes to complete by executing a

gsync () (global synchronization) call. This prevented more than group nodes

from writing at a time. Nodes in the last group do not send the final message, and

when all nodes complete their writes, the nodes proceed past the gsync () and

resume the computation portion of the benchmark.

Another problem encountered on the iPSC/860 was with verification. Because the

system's nodes were each workstation CPUs, i.e., they were not 1-bit processors,

the data could be verified by a single node. This worked well for N-12 and N-64,

however, for N-102, the amount of time required for verification was longer than

the average time between system reboots. Additionally, because the only method

for removing data from the CFS was through an ethernet connection, the amount

of time required to move the large data file off of the system was also greater than

the average time between reboots. Therefore, the largest problem size was not ver-

ified at the time this paper was written.

The verification code was written in C and ran on a single i860 node. This code is
shown below:

#include <stdio.h_

/* _btioverify.incl" defines the matrix dimension (N) as DIM,

and the number of writes (Ns/Iw) as RPT*/

#include _btioverify.incl"

main()

[

FILE *fp;

long i,j,k,n;

double data;

12

fp = fopen(a/cfs/flneberg/btout.bin',' ar");

fp = fopen(abtout.bin", at");

for (k=0; k<RPT; k++){

fseek(fp, 5L*8L*(DIM*DIM*DIM)*k,

for (i=0; i<DIM; i++)[

for (j=0; j<5; j++){

fread(&data, 8, i, fp);

printf(a%15.101f\n", data);

)

fseek(fp, (5L*8L*(DIM*DIM) +

}

]

fclose(fp);

]

4.0 Results

0);

DIM*5L*8L), i);

4.1 Cray Y-MP

Results for an 8 processor Cray Y-MP in dedicated time are shown in Table 2 and

TABLE 2. Results for CrayBT based benchmark

N

64

102

102

102

102

102

No. Proc. T c (sees) T r (secs)

117.9 141.7

3554 3740

1816 1857

930.6 975.3

645.0 774.5

506.4 694.8

are plotted in Figure 2. This benchmark im

RIO (bytes/sec)

2442810 0.202

453993 0.052

914342 0.023

1740934 0.048

2192295 0.201

2443772 0.372

)lementation was the only one that

obtained true "supercomputer" performance. With 8 processors, the Cray ran at

1.38 GFLOPS without I/O and 1.08 GFLOPS with I/O. Note that the fast computa-

tion speed exaggerates the overhead of I/O. The overhead measurement here

(0.372) was the largest of any of those measured in this study. However, RIO was

the highest measured and the execution times were the lowest.

4.2 Thinking Machines CM-2

In Table 3, the data collected for two values of N, 12 and 64, is listed using the exe-

cution time of SampleBT (without the addition of I/O code) as TC.

TABLE 3. Results for SampIeBT/CMF based benchmark

N Tc (secs) T r (secs) RIO (bytes/sec)

12 60.25 81.85 5067 0.359

64 5526 5621 74618 0.017

As can be seen from these results, the runtime of SampleBT/CMF was quite large.

This generally distorts results by making RIO and _ too low (note that while _ was

13

4000

Figure 2: Cray Y-MP/8 Performance

I ! ! I l I

3000- "":,:.

U_, O.._T c

2500 _ _ O.__>T T

2000- :,.

1500

1000

501)

ot
Number of Processors

not too low for N-12, this does not occur for any other problem sizes on the CM-2

or for the other machines). A better BT implementation was RNRBT/CMF. Its

results are shown in Table 4 for N-64 and N-102.Note that the N-102 execution

time is an approximation determined from running the benchmark for 1/8 of the

total number of iterations and multiplying the result by 8. This was necessary

because the amount of run-time needed for the large benchmark on the CM-2 was

prohibitive.

TABLE 4. Results for RNRBT/CMF based benchmark

4.3

N T C (secs) Tr (secs) RIo (byteslsec)

64 3754 3901 107519 0.039

102 a 63426 64769 26215 0.021

a. approximated by running for 25 iterations and multiplying
elapsed time by eight.

Intel iPSC/860

Experiments were performed on the iPSC using the SampleBT/iPSC code for

N= 12 and 64 with 16 and 64 processors respectively. These results are summarized

14

in Table 5. As with the CM-2, the results with this inefficient BT implementation

TABLE 5. Results for SampleBT/iPSC based benchmark

N

12

64

TC (secs) T r (secs)

37.96 39.82

6663 9262

Rio (bytes/sec)

10415 0.049

45285 0.390

yield low results for both RIO and 4.

In addition, the faster RNRBT_3D/iPSC code was run for N=12, 64, and 102 with

a varying number of processors. These results are shown in Table 6. Note that for

TABLE 6. Results for RNRBT 3D/iPSC based benchmark

N No. Proc.

12 8

64 32

64 64

64 128

102 128

TC (secs)

9.694

1381

753.0

435,6

1566

Tr (secs)

10.20

1567

1036

779.9

2663

Rio(byteNsec)

40659 0.052

267665 0.135

404856 0.376

537800 0.719

637602 0.701

N--12 and 102, only a single machine size was possible. RNRBT_3D/iPSC

requires the processors to be laid out as a 3 dimensional grid with sides that are

powers of two. For N--12, the data distribution was too sparse for more than 8 pro-

cessors (a 2x2x2 grid). For N-102, all 128 processors had to be used to have

enough memory to store the programs data set. The 128 processors were laid out as

a 4x4x8 grid. For N-64, three machine sizes were possible including 32 (2x4x4

grid), 64 (4x4x4 grid), and 128 (4x4x8 grid) processors.

5.0 Analysis

In high performance computer systems, balance can be defined as the property a

system exhibits when all of its components are well matched in performance.

Therefore, a "well-balanced" I/O system should be capable of performing its

required tasks at a rate commensurate with the system's computational perfor-

mance. Unfortunately, balance is not only an application dependant characteristic,

but is also subjective. However, as a goal, scientists at NAS generally consider an

overhead of 10% (0.1) to be acceptable [Wee92]. In a balanced system, one would

hope to keep _ low, though a _ that is "too" low may indicate I/O hardware that has

a higher capacity than is required for a system's computational capacity. One also

wants to decrease execution time as much as possible, thus keeping RIO high. The

goals of increasing RIO and decreasing _ may be contradictory ff I/O performance

does not scale with computation performance. Consider Figure 3. In this graph, the

performance of the three machines is compared. First, note the difference in aggre-

gate system performance, RIO. Clearly, the Y-MP is the fastest machine, followed

by the iPSC/860, with the CM-2 being the slowest. These are reflected in the val-

15

4000
Figure 3: System Comparison for N--64

1-

3500

3000

2500

2000

1500

1000

500

0

Machine Type

iPSC/860

ues of RIO shown in Tables 4, 6, and 8. These are 2.3 MBytes/sec for the Y-MP,

0.61 MBytes/sec for the iPSC/860, and 0.025 MBytes/sec for the CM-2. (Note, the

iPSC/860's performance is still repeatable given the approximately 10 times price

difference between the iPSC/860 and the Y-MP.)

What is of more interest, however, is the added execution time due to I/O. For the

CM-2, the T T is only slightly greater than TO. However, for the iPSC/860, T T is

almost twice T c. This indicates that while the iPSC/860's overall performance is

significantly better than the CM-2, its I/O performance is much worse relative to

its computation performance. In terms of system balance, neither of these

machines is well balanced. The iPSC/860 lacks adequate I/O performance, and the

CM-2 has I/O performance greater than that needed for its computational power.

T c and T T for the Y-MP seem to be equal, however, the relative difference

between T T and T¢ falls between that of the other two machines. Thus, T T is sig-

nificantly greater than T C (by about 20%, see Table 2), but the difference is not

nearly as great as the relative difference between T C and T T for the iPSC/860. This

indicates that the Y-MP is balanced such that I/O only adds 20% to execution time.

This is better than the iPSC/860 and indicates a better balance between computa-

tion and I/O performance than the CM-2. However, it still does not reach the goal
of 10% overhead.

Consider what happens if we change the computational performance of the Cray

Y-MP (by varying the number of CPUs). As the number of processors is increased,

T c and T T decrease (see Figure 2). The change in computation rate can be

observed using RIO which is a measure of overall system performance (see Figure

4). Therefore, as the number of processors, and therefore the computational perfor-

mance is increased, RIO increases proportionately. However, note that in Figure 2

16

Figure 4: Cray Y-MP/8 I/O Rate

2.8e+06

2.4e+06

.-. 2.0e+06

_ 1.6e+06

_ 1.2e+06

8.0e+05

4.0e+05 c

1 ! I ! ! !

o.oe+oo , _ . _ , h , _ , _ , + .
Number of Processors

the difference between T C and T T increases as the number of processors is

increased. To better illustrate this, Figure 5 plots _ (overhead) vs. number of pro-

cessors used on the Y-MP. As can be seen, the I/O overhead increases steadily as

Figure 5" Cray Y-MP/8 Overhead

0.37 • , • , • , - , - , • , -

0.34

0.30

0.27

0.23

"_ 0.20

0.16

0.13

0.09

0.06

0.02 _" " 3 " 4 ' 5 " 6 ' 7 '
Number of Processors

the number of processors is increased. This is because the I/O rate is not being

scaled with the computational performance (i.e., the number of processors).

Rather, the I/O transfer rate remains approximately constant with two or more pro-

cessors. Because computation time is decreasing as more processors are added and

17

I/O time is remaining relatively constant, the added overhead due to FO increases.

Thus, balance is dependent on both computation and I/O performance and neither

alone is a good system metric. Further, we see that the Cray Y-MP could use

slightly better FO performance to achieve the 10% goal for 8 CPUs and reaches

this goal for balance with approximately 5 CPUs. While this may be unimportant

for an existing machine (i.e., an application running on an existing machine will

generally use all available processors), it indicates that for a more powerful system

(e.g., a Y-MP C90) the I/O performance must be scaled with computational perfor-
mance.

Now, consider what happens when a sytem is out of balance. First, there is the

CM-2, which is an example of a machine with a low RIO, and I/O performance that

is relatively high. Consider the data for RNR_BT/CMF with N-64. RIO is low,

107519 bytes/sec, but overhead is also low, 3.9% (0.039). This indicates a system

that is out of balance relative to the 10% goal in that the computation rate is too

low for the I/O performance. Next, there is the iPSC/860. For N-64, RIO is 537800

bytes/sec, five times that of the CM-2, though not as good as the Y-ME However,

the iPSC/860's I/O performance is less than both the Y-MP and the CM-2. This

results in an overhead of 71.9% (0.719), i.e., 71.9% of the time required to run the

I/O benchmark is spent writing data. This indicates that the FO system is slower

than is needed to achieve the 10% goal with the available computation perfor-
mance.

6.0 Conclusions

In this paper it has been shown that the NHT-1 application I/O benchmark is a

measure of both absolute system performance and balance for a given type of com-

putational and I/O workload. System performance is-qh-d-icated by the RIO metric

by measuring the total run time of an application that includes significant quanti-

ties of I/O and dividing that time by the total amount of I/O performed. This allows

RIO to reflect both the system's computational and its I/O performance. Therefore

a system with a high RIO must achieve high performance for applications with sig-

nificant amounts of I/O. However, what RIO does not indicate is the relative bal-

ance of I/O and computational performance. Balance is then indicated by 4. A

machine with a high RIO and a _ around 0.1 is a fast, well-balanced machine. A

machine with a high 4, is unbalanced in that its I/O is too slow in proportion to its

computational power. If _ is low, however, the machine is still unbalanced, in that

the I/O performance is higher than is warranted for the system's computational

performance.

In this paper we have seen results from three machines, none of which were per-

fectly balanced. The CM-2 is quite slow in absolute performance, but has I/O that

is relatively fast (particularly given its lack of computational power). The

iPSC/860 is relatively fast, but has I/O that is much too slow for its computational

18

power.TheCrayY-MP isrelativelywell balancedbut coulduseslightly fasterI70
for applicationsthatuseall 8 processors.

Theseresultsindicatethatnosinglebenchmarkmetric is appropriatefor measur-
ing applicationI/O performance.Rather,by measuringbothabsoluteperformance
and balance,it is possibleto get a good sensefor how a machinewill perform
under loadsthat include significantamountsof disk I/O. Thesetwo aspectsare
measuredby theRIOand_ metrics thataregeneratedby the NHT-1 Application
I/O benchmark.Thus,thebenchmarkallowsoneto determineif a systemconfigu-
rationmeetsabsoluteperformancegoalsandhasanappropriateamountof I/O per-
formancerelativeto its computationalpower.

7.0 Acknowledgments

The author of this paper would like to acknowledge Russell Carter, Bill Nitzberg,

and Bernard Traversat for their help in preparing this paper, as well as the mem-

bers of the High Speed Processor (Cray support) and Parallel Systems support staff

at NAS for putting up with the abuse applied to their systems while collecting the

data for this paper.

8.0 References 2

[BaB91] D. Bailey, J. Barton, T. Lasinski, and H. Simon, eds, The NAS Parallel

Benchmarks, Revision 2, Technical Report RNR-91-002, NASA Ames Research

Center, Moffett Field, CA, July 1991.

[BaB92] D. H. Bailey, E. Barszcz, L. Dagum, and H. D. Simon, NAS Parallel

Benchmark Results, Technical Report RNR-92-002, NASA Ames Research Cen-

ter, Moffett Field, CA, August 1992.

[CAC92] R. Carter, B. Ciotti, S. Fineberg, and B. Nitzberg, NHT-1 1/0 Bench-

marks, Technical Report RND-92-016, NASA Ames Research Center, Moffett

Field, CA, November 1992.

[Cio92] B. Ciotti, "Session Reservable File Systems (SRFS)," Spring 1992 CRAY

User Group Proceedings, Berlin, Germany, 1992.

[Hi187] W. D. Hillis, "The connection machine," Scientific American, vol. 256,

June 1987, pp. 108-115.

[Int91] Intel Supercomputing Systems Division, iPSC/2 and iPSC/860 User's

Guide, Intel Corporation, Beaverton, OR, 1991.

[Nit92] B. Nitzberg, Performance of the iPSC/860 Concurrent File System, Tech-

nical Report RND-92-020, NASA Ames Research Center, Moffett Field, CA,

2. NAS technical reports may be obtained by sending e-mail to do c - cen te r@n a s. n a s a. 9o v.

19

December1992.

[Nug88] S.F.Nugent,"'TheiPSC/2direct connectcommunicationstechnology,"
Third Conference on Hypercube Concurrent Computers and Applications, January

1988, pp. 51-60.

[Wee92] S. Weeretunga, NAS Applied Research Department, personal communi-
cation, October 1992.

[ZeL88] S. A. Zenios, R. A. Lasken, "The connection machines CM-1 and CM-2:

solving nonlinear network problems," 1988 International Conference on Super-

computing, July 1988, pp. 648-658.

20

NAS

Title:

TT,_,m'_7--i /Tp_,/,'_,.t,b,,_/_

Reviewers:

"i have carefully and thoroughly reviewed this

technical report. I have worked with the

author(s) to ensure clarity of presentation and

technical accuracy. I take personal

responsibJ_y for. the quality of this document."

Signed: __.'_ ___

Signed:

Name:

Branch Chief:

Date:

Approved:

TR Number:

Important: Pui this form as the last page in the published Tech Report.

